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A B S T R A C T 
 

 

This paper presents a machine learning approach for the automatic identification of rip currents 
with breaking waves. Rip currents are dangerous fast moving currents of water that result in 
many deaths by sweeping people out to sea. Most people do not know how to recognize rip 
currents in order to avoid them. Furthermore, efforts to forecast rip currents are hindered by lack 
of observations to help train and validate hazard models. The presence of web cams and smart 
phones have made video and still imagery of the coast ubiquitous and provide a potential source 
of rip current observations. These same devices could aid public awareness of the presence of 
rip currents. What is lacking is a method to detect the presence or absence of rip currents from 
coastal imagery. This paper provides expert labeled training and test data for rip currents. We 
use Faster R-CNN and a custom temporal aggregation stage to make detections from still images 
or videos with higher measured accuracy than both humans and other methods of rip current 
detection previously reported in the literature. 

 
 

 

1. Introduction 
Rip currents are the most significant safety risk to swimmers along the coastlines of oceans, seas, and large lakes. 

[9, 10, 16]. The majority of beach goers do not know how to identify rip currents, and there is no robust and reliable 
location-independent method to identify them. Globally there are thousands of drownings each year due to rip currents 
[28, 56]. A 20 year study by the US Lifesaving Association reports that 81.9% of the 37,000 beach rescues each 
year are due to rip currents [9]. Lifeguards are often trained to identify rip currents. However the majority of 
drownings occur on beaches without trained personnel [2, 6]. Posted signs can provide a warning, but there is 
evidence that most people do not find existing signs helpful in actually identifying rip currents [8]. There has been 
no decline in the number of associated drowning fatalities, despite warning signs and educational material. 

Rip currents are a well-studied ocean phenomenon [5, 36, 38]. They are defined as strong and narrow channels 
of fast-moving water that flow towards the sea from beaches. When waves break, they form a “setup” or an increase 
in mean water level. This setup can vary along a shoreline depending on the amount or height of breaking waves. 
Rip currents form as water tends to flow alongshore from regions of high setup (larger waves) to regions of lower 
setup (smaller waves) where currents converge to form a seaward flowing rip. Furthermore, macrovortices, induced 
by alongshore uneven wave breaking, may also be a contributing factor for rip current formation and evolution. [11, 
46, 68, 66]. The speed of seaward rips can be quite strong reaching 2 m/s, faster than an Olympic swimmer. There are 
multiple factors that determine the location and strength of rips, such as bathymetry, wave height and direction, tide, 
and beach shape. Rip currents may either be transient or persistent in space and time. Rips that are frequently found 
at the same location are usually indicative of a fairly stable bathymetric feature such as a sand bar or reef, or a hard 
structure such as rocky outcrop, jetty or pier. These bathymetric features results in variations in wave breaking and 
setup leading to channelized rip current flow. Transient or flash rips are independent of bathymetry and may move up 
or down the beach, and may appear or disappear. Transient rips are best understood with respect to vorticity due to 
short-crested wave breaking and the subsequent eddy coalescence [48, 49]. 

The Southeast Coastal Ocean Observing Regional Association (SECOORA) in partnership with the National 
Oceanic and Atmospheric Administration (NOAA) maintains a network of coastal web cameras for different appli- 
cations such as montoring wave runup, human use of natural resources, and spotting rip currents [24]. These data are 
supporting the validation of a rip current forecast model to alert people to potential hazards [25]. The most commonly 
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Figure 1: A collection of beach scenes, some of which contain rip currents. Unfortunately these rip current “objects” do 

not have clear shape, and most people find them hard to identify. 

 
 
 

used method to visualize rip currents from video is time averaging, summarizing a video as a single image [35]. How- 
ever these time averages when manually assessed can be misinterpreted. Furthermore, they are not readily available 
nor interpretable by the average beachgoers, and the process of averaging removes available information. 

In recent years the coastal engineering community has successfully used deep neural networks to solve many 
oblems. Classification problems such as classifying wave breaking in infrared imagery [12], beach scene and other 

landscape classification [14], automated plankton image classification [55] and ocean front recognition [50] were for- 
mulated as deep learning problems using convolutional neural networks. Furthermore, some regression problems such 
as optical wave gauging [13], tracking remotely sensed waves [74], typhoon forecasting [42] were also solved using 

deep neural networks. In addition, generative adversarial networks, a type of deep neural networks, were used to 
improve the quality of downscaling of ocean remote sensing data [23]. 

Object detection with deep neural networks is well studied in the computer vision community. However most 
benchmarks and research focus on detecting physical objects with boundaries between what is and is not an object 
[20, 27, 51]. Rip currents are ephemeral “objects” which are not observable in every frame, and amorphous without 
clearly defined boundaries even when observable. It is not clear whether existing methods are applicable. Figure 1 
provides a set of examples, illustrating the difficulty of the problem. In some of the images rip currents are clearly 
visible while in some it is difficult for a layperson to recognize the presence of a rip current. 

Our work is aimed at introducing this problem to the coastal engineering community, and showing that object 
tection methods are applicable. We gathered training data of rip currents and labelled those with bounding boxes 

indicating the location of the rip current with a co-author who is a rip current researcher at NOAA. We use Faster R-
CNN [71] with a custom temporal aggregation stage that allowed us to achieve detection accuracy that is higher 

than both humans and other methods of rip current detection previously reported in the literature. 
The remainder of the paper is organized as follows. All the related work is summarized in Section 2. We discuss 
w the data was collected in Section 3. Our method is discussed in 4. Results are discussed in 5. Limitations and 
discussion are in Section 6. In Section 7 we conclude our paper. And in Appendix A we provide the link to the 

supplementary materials. 

2. Related Work 
Rip currents can be observed using both in situ and remote sensing methods. Among the in situ methods, wave 

sensors, acoustic velocimeters, or current profilers can be deployed at specific locations [26, 40, 43, 54]. Floating 
drifters with embedded GPS units have also been used to measure currents [15, 16, 73]. These methods are costly, 
time consuming, require technical expertise and are generally only applicable to highly localized instances in time 
and space. These limitations severely hinder the applicability of such approaches to both public warnings and model 
validation. In comparison, remote sensing technologies such as satellite, air-borne, and ground-based imaging as well 
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Figure 2: Examples drawn from the 2440 images we collected and labeled to build a training data set. Ground truth 

bounding boxes are shown in red. 

 

 
as radar imaging provide more coverage and less expensive (e.g. web cameras) alternatives [31, 60]. A hybrid approach 
of adding fluorescein dye into the water and observing its dispersion using aerial video provides dramatic visualization 
of rip currents [7, 18, 19, 69]. 

Time averaged images are a routine method for analyzing video in oceanic research, with 10 minutes being a 
common integration period [34, 35, 52, 67]. This method is popular because averages often make identification of 
rip channels easier for the human eye. While these images are usually intended for human interpretation, Maryan et. 
al. apply shallow machine learning to recognize rip channels in time averaged images [59]. Nelko also used time 
averaged images and noted that prediction schemes developed at one beach location may not be directly applicable to 
another without some modifications [61]. Haller introduced wave averaging to enhance the detection of rip currents in 
microwave data; an approach which could also be applied to imagery data [31]. 

Dense optical flow [4, 37] has been used to detect rip currents in video [65]. This method is attractive since optical 
w fields can be directly compared against ground truth flow fields obtained from in situ measurements [21]. Unfor- 

tunately these methods are sensitive to camera perturbation, and have difficulty in areas lacking textural information. 
Certain kinds of rip currents are characterized by visible sediment plumes. These can be segmented based on 

hanges in coloration. For example, Liu et al., use thresholding in HSV color space to detect rip currents [54]. Unfor- 
tunately, not all rip currents contain sediment plumes, and thus this method is not applicable to our data sets. 

Object detection in images is well studied in the computer vision literature [32, 53, 63, 70, 76].  These methods  
e been extended to detect objects in videos [33, 45, 79]. However, with the exception of Maryan et al. [59] which 
forms detection based on time averaged images, and Liu et al. [54] which performs detection based on color 

segmentation, they have not been applied to crisp images or videos for the purpose of rip current detection. 

3. Data sets 

3.1. Training Data 
Since rip currents are a new problem domain for computer vision, we did not find any existing public databases of 
current images. Therefore, we assembled a training data set of rip current images and non-rip current images from 
atch. Our primary source for the database was Google EarthT M , which allowed us to extract high-resolution aerial 

images of rip currents and non-rip currents. In total, the database contains 1740 images of rip currents and 700 images 
of similar beach scenes without rip currents. The images range in size from 1086 × 916 pixels to 234 × 234 pixels. We 
annotated ground truth in the rip current images with axis-aligned bounding boxes: where the x axis and y axis of the 
bounding box is aligned with the x axis and y axis of the image. Some examples of the training data set are shown in 
Figure 2. Note that this data set contains unambiguous easy examples. We used this training data for training models 

described in Section 4. 
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Figure 3: Architecture of Faster R-CNN: Classification and Regression branch. CNN represents the convolutional neural 

network. 

 

3.2. Test Data 
We also collected a data set of 23 video clips consisting of 18042 frames in total. Of those, there are a total of 9053 

ames with and 8989 frames without rip currents. Image size varies from 1280 × 720 pixels to 1080 × 920 pixels. 
We used the bounding boxes labelled on each image as the ground truth. Figure 1 contains both positive and negative 
example frames, as well as a few frames from the training set that might be mistaken as containing a rip current. Note 
that this set contains more difficult cases. 

The frames of this video data set were used for testing. Note that the static images in the training set were taken 
om high elevation while the videos used to test the model were taken from a lower perspective. Even so, the trained 
model performed well on the test frames from the video collection. 

4. Method 

4.1. Deep Learning 
Deep learning methods have recently been used in many computer vision tasks. These methods have taken over 

many traditional shallow machine learning methods such as support vector machines, random forests, etc. [1, 41, 44, 
77, 78, 82]. However, deep learning models require careful tuning of hyperparameters, which determine the deep 
learning model architecture. Multiple sensitivity analysis experiments are often needed to optimize hyperparameters 
for a particular model and task. Also, deep learning models are costly to train, usually taking days and many dedicated 
computation resources such as GPUs (Graphis Processing Units) or TPUs (Tensor Processing Units). 

Unlike deep learning methods, traditional machine learning methods require a fair amount of human feature en- 
gineering by a domain expert, such as the features created by Maryan et al. [56] for the rip current detection task. 
Features engineered by humans may not be the most optimal. In deep learning, the algorithm learns the most optimal 
features through gradient decent that are necessary for the given task. 

Even with a high computation cost of training, deep learning models learn a large number of parameters compared 
traditional machine learning models, resulting in a higher accuracy in complex vision problems. Deep learning 

methods such as region based convolutional neural networks have out-performed traditional machine learning methods 

in many vision tasks, such as object detection [30, 59, 64] 

4.2. Static Image Detector: Faster R-CNN 
Region-based convolutional neural networks have achieved great success in object detection problems. These 

object detection models usually consist of separate classification and localization networks with a shared feature ex- 
traction network. In the computer vision community, Faster R-CNN is generally considered as the most accurate object 
detector [22]. Many critical applications such as fire detectors [3] and pedestrian detectors [47], successfully use Faster 
R-CNN. Also, many medical applications such as detecting cervical spinal cord injury and disc degeneration detection 
[57], breast cancer detection [58], malaria cell detection [39] use Faster R-CNN as their underlying object detector. 
Therefore, we choose Faster R-CNN as our single image detector. 

The first is the deep convolutional neural network that proposes regions.  The second is the Fast R-CNN detector 

].   Faster R-CNN follows  the traditional object detection pipeline.   It first generates region proposals,  and  then 

(x,y) 

h 

w 

rip 

Regression 

Classification 

[29 



Automated rip current detection

de Silva et al.: Preprint submitted to Elsevier Page 5 of 16 

 

 

categorizes each proposal as either rip current or background. Secondly, the classified bounding boxes are further 
refined. Essentially, the model learns a mapping from the generated regions to the actual ground truth with a regression 
network. The model then uses this mapping “function” during testing to refine the generated region. These refined 
bounding boxes can be anywhere in a frame as features are translation invariant [71]. If there is more than one bounding 
box detected in a frame, we only keep track of the largest one and ignore any additional boxes. 

As shown in Figure 3 the convolutional neural network (CNN) consists of five hierarchical blocks. Each block 
consists of convolutional layers followed by a max pooling layer. The convolutional layers generate features by applying 
filters to the input. After which the output is fed into a max pooling layer where the feature map is down-sampled by 
only keeping the maximum values within a region. These two steps are repeated in the five blocks of the CNN, resulting 
in the final feature map. 

Multiple regions from the input image are then projected onto the feature map. These regions are generated as a 
rectangle with predefined proportions and positions. These regions have a predefined area of 642 pixels, 1282 pixels 
and 2562 pixels. Each region is generated as an rectangle with three different aspect ratios for length and width: 1 1 
, 1 2 , 2 1, resulting in nine different regions. These regions are then positioned on a regular grid by generating the 
nine regions centering round each grid point. The regions that fall beyond the boundary of the image are ignored. The 
associated features for these regions are then fed into the fully connected layers where the decisions are made. The 
classification branch predicts if the region is a rip current or not. If the classification branch classifies the region as a 
rip current then the regression branch further refines the position and the size of the detected rip current. 

We trained the Faster R-CNN model with the training data discussed in section 3.1. Before training, each image 
was augmented by rotating 900 degrees clockwise and counter clockwise, producing a training data set three times 
the size of the original training data set. All the training data was resized to 300 × 300 pixels before training to save 
computation time. We used bi-cubic interpolation to resize the images. 

4.3. Frame Aggregation 
Static object detection models only consider the information in the frame currently being processed. However, 

rip currents are natural ocean phenomena, with shape and texture change depending on many external factors such 
as weather, wind speed, wave field characteristics, water flow speed, floating debris, and dirt sediments. The exact 
boundaries of a rip current are not well defined. This is different than objects with well-defined edges such as pedes- 
trians or vehicles. Applying detection algorithms to objects with amorphous boundaries such as rip currents produces 
bounding boxes with variable sizes and locations in adjacent video frames. In Figure 4 we illustrate this variability by 
drawing all correctly detected bounding boxes from one video sequence onto a single frame. 

This variability affects overall accuracy, and would not instill confidence in the results if these bounding boxes 
were presented to a user as a video overlay. Thus we investigate temporal smoothing and aggregation to improve the 
results. 

We find the overlapping regions of the detected bounding boxes by using an accumulation buffer with the same 
size as the input frame and initialized as a zero matrix. We consider a temporal window of N frames to build the 
accumulation buffer. In the first N − 1 frames, the accumulation buffer is incremented by 1 for each region within a 
detection bounding box. Starting with frame N, the area covered by a detection bounding box is incremented by 1 
and capped at a maximum of N. Regions not covered by a detection bounding box are decremented by 1, but retains 
a minimum of 0 in the accumulation buffer. In effect, the accumulation buffer keeps track of the bounding boxes 
using a sliding window of N frames. The process of building the accumulation buffer is illustrated in Figure 5, where 
areas with higher values are displayed as darker regions in the accumulation buffer. For purposes of identifying a single 
bounding box over the collection of bounding boxes across N frames, we consider only the regions of the accumulation 
buffer where the value is at least T , and draw the tightest possible axis-aligned bounding box around this region (see 
Figure 6). This is the aggregated detection. In our implementation we use N=60 and T=30. 

Before frame aggregation, large variations in bounding box size occur in almost all consecutive frames, shown in 
Figure 7 top. After frame aggregation, the average size change is much smaller, with most frames having zero change 
in size from the prior frame. The variation in position of the bounding boxes is similarly reduced by frame aggregation, 
as seen in Figure 7 bottom. This improved temporal coherence provides a smoother and more consistent portrayal of 
the rip current location when shown as an overlay on the video. 

When analyzing video clips, our method analyzes individual frames and places a bounding box around detected rip 
currents. Since analysis is on a per frame basis, the bounding boxes may move from frame to frame. In addition, it’s 
possible that a rip current may not be detected in a particular frame. However, with our proposed frame aggregation 
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Figure 4: The bounding boxes marking the boundaries of detected rip currents from individual frames of a video segment 

are superimposed onto the most recent frame. Note how the bounding boxes from individual frames may move and/or 

change shape 

 

 
Figure 5: Frame aggregation for a window of length N. First row shows the input frame sequence. Second row shows the 

detections from Faster R-CNN. Third row shows the accumulation buffer. 

 
 

strategy, instances when a few frames where the rip is not detected (false negative), or when there’s a sudden change 
in the location or size of the bounding box (false positive) are both handled gracefully. 
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Figure 6: A visualization of the resulting accumulation buffer values. Regions with a higher value are shown in more 

opaque red. The resulting bounding box around thresholded values is shown in solid dark red. The full video can be seen 

in the supplementary material in appendix A 

 
 

 

Figure 7: Plots showing the differences in area and center of bounding boxes in consecutive frames. Without frame 

aggregation (in red) there are much higher differences in bounding box sizes and positions than there is after frame 

aggregation (in blue). 

 
 

5. Results 
We compared the accuracy of our method with human observers as well as two prior methods. We also compared 
own method with and without temporal aggregation. 

Comparison metric. All methods were tested using the video data set. Frames were labeled as correctly classified if 
the detected bounding boxes have an Intersection over Union (IoU) [72] score versus ground truth above 0.3. IoU is 

our 
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Figure 8: Rip current detections on some of the frames from the test data set. Red bounding boxes show the correctly 

detected rip currents. Blue bounding boxes show the ground truth. Frames without bounding boxes do not contain any 

rip currents. 

 
 
 

calculated as area_of _intersection/area_of _union of the ground truth and the detected bounding boxes. Accuracy 
of the video was computed as correct_labels/total_frames, and Table 1 provides the results for all methods. Since rip 
currents do not have a well-defined boundary the scale of ground truth bounding boxes has some uncertainty. Therefore, 
the predicted bounding box does not need to closely match with the ground truth bounding box for a detection to be 
marked as correct. Because of this we choose a lower IoU threshold than detecting objects with well defined boundaries 
such as cars or tanks [71]. We visually verified that even with a lower IoU threshold the detected bounding box shows 
the location of the rip current. Also, we used this IoU threshold across all methods in Table 1. 

Humans. One of the primary reasons for an automated method of rip current detection is that most people are not good 
at identifying rip currents [8]. To measure human accuracy of identifying rip currents, annotators were asked to draw 
bounding boxes around places they believe to have rip currents. We sampled every tenth frame from our video test set 
and randomized presentation order across all positive and negative examples. Human annotators were not carefully 
trained, instead they were provided three positive and three negative examples, roughly the amount of information 
which might fit on a sign at the beach. Annotators were acquired using Mechanical Turk, an online market where jobs 
are posted for workers [62, 17], with basic screening for reliable workers, and paid $0.10 per image. 

Although human performance was relatively poor with only 76% of frames labeled correctly, it was higher than we 
xpected based on past studies [8]. We hypothesize that the sample images showing both locations of rip currents and 
absence of rip currents are more effective than warning signs alone. 

Time averaged images. Maryan et al. [59] perform detection on time averaged images using a boosted cascade of 
simple Haar like features [76]. We used Maryan’s time averaged data for training since our training data set consists 
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. Human Philip [65] Maryan [59] Maryan 

[modified] 

F-RCNN 

[ours] 

F-RCNN+FA

[ours] 

rip_01.mp4 0.976 0.895 0.358 0.460 0.966 1.000 

rip_02.mp4 0.700 0.098 0.698 0.135 0.776 0.860 

rip_03.mp4 0.231 0.347 0.194 0.540 0.831 0.950 

rip_04.mp4 0.757 0.800 0.487 0.780 0.939 0.970 

rip_05.mp4 0.883 0.280 0.736 0.450 0.834 0.957 

rip_06.mp4 0.881 0.000 0.167 0.470 0.753 0.890 

rip_08.mp4 0.492 0.063 0.328 0.730 0.860 0.850 

rip_11.mp4 0.824 0.000 0.563 0.940 0.930 0.951 

rip_12.mp4 1.000 0.000 0.734 1.000 1.000 1.000 

rip_15.mp4 0.967 0.137 0.315 0.390 0.760 0.870 

rip_16.mp4 0.614 0.073 0.468 0.640 0.820 0.920 

rip_17.mp4 1.000 0.321 0.064 0.750 0.980 1.000 

rip_18.mp4 0.563 0.218 0.250 0.240 0.790 0.890 

rip_21.mp4 0.901 0.543 0.486 0.180 0.940 1.000 

rip_22.mp4 0.583 0.000 0.479 0.395 0.880 0.974 

no_rip_01.mp4 0.986 0.169 0.000 0.972 0.813 1.000 

no_rip_02.mp4 1.000 0.789 0.000 0.985 0.807 1.000 

no_rip_03.mp4 0.919 0.000 0.000 0.981 0.984 1.000 

no_rip_04.mp4 0.952 0.000 0.000 0.974 0.835 1.000 

no_rip_05.mp4 0.903 0.000 0.000 0.986 0.833 1.000 

no_rip_06.mp4 1.000 0.246 0.000 0.986 0.875 1.000 

no_rip_07.mp4 0.983 0.525 0.000 0.982 0.875 1.000 

no_rip_11.mp4 0.988 0.198 0.000 0.964 0.924 1.000 

average accuracy 0.760 0.307 0.210 0.729 0.884 0.984 

Table 1 

Accuracy for each video in the test set. Column 3: Maryan[59] is trained on their training 

data. Column 4: Maryan [modified] is trained on our training data. The F-RCNN method 

has higher overall accuracy than humans or any of the prior methods tested. Frame 

aggregation does contribute to improvement in accuracy. 

 
 

of only static frames. Testing was performed by first computing time averaged images on each video in our test data 
set. This method did not perform well. In order to determine if the cause was the images available for training or the 
model itself, we repeated the experiment with new data. We replaced the relatively small number of low resolution 
time-averaged images from [59] with the static images from our training data set. Testing this time was against single 
frames in our test data . This modification is called Maryan[modified] in Table 1. When using our training data the 
model accuracy improved considerably, leading us to conclude that appropriate training data is critical to good results. 
Furthermore, it suggests further investigation on whether using crisp images, rather than time averaged images, to train 
a model might produce more accurate results. 

In our test images/videos the beach is always located at the bottom half of the image/video. However, the training 
data used by [59] was cropped from images where the beach is located in the top half of the image. Therefore, we were 
concerned that the difference of orientation between the training data and the test data contributed to the low accuracy 
of the model. However, when we retrained the model with vertically flipped training data we did not see any significant 
difference in accuracy on our test images/videos. We hypothesize that the reason for this is that the cropped training 
images contain insignificant amount of beach pixels. 

Optical flow. Philip et al. [65] compute optical flow on video sequences and make the simplifying assumption that 
rip currents can be identified by regions with the second most predominant flow direction, after that of the primary 
incoming wave direction, and that they flow in a single seaward direction. This results in regions of actual rip currents, 
but also picks up swash regions where water is washed up the beach and back out to sea with the passing of each wave. 
This method was introduced with the primary intention of providing visualizations to users, rather than automated 
detection. To allow comparison, we modify the method to return a bounding box around the largest detected region, 
ignoring smaller regions which are less likely to be correct. This method performed poorly on our test data. We noticed 
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Figure 9: Example failure cases. The false positives on the beach scene (right) are not easily explainable. The false 

positive on the left scene happens only on spurious frames, which is then corrected by frame aggregation. 

 

 
that in videos where there is not enough textural information on the rip current, the optical flow field generated was 
weak, leading to either missed detections or detection in other regions of the video with stronger texture. 

Frame aggregation. We implemented frame aggregation as a post process to Faster R-CNN initially to temporally 
stabilize detections, driven by a need for user interpretable visualization of rip current location. 

In order to understand whether temporal smoothing also increased accuracy we analyzed our implementation both 
h and without frame aggregation. We found that temporal aggregation leads to higher accuracy than using Faster 

-CNN alone. Example detection results are shown in Figure 8. Numerical comparison of humans, prior methods, 
and our model are provided in Table 1. Faster R-CNN with frame aggregation had the highest accuracy in nearly all 
cases, and the highest overall (last column of Table 1). For visual comparisons we have added all the results in the 
supplementary materials at appendix A. 

6. Discussion and Future Work 
As with all machine learning models, our implementation can fail when used with images that do not resemble 

training data set. Our data sets included primarily rip currents characterized by a gap in breaking waves, the most 
common visual indicator for bathymetry controlled rip currents. Thus we would expect to miss rip currents with other 
visual indicators like sediment plumes. We also expect to fail when presented with new imagery, and occasionally for 

no apparent reason at all, as seen in Figure 9. 

Sensitivity Analysis. Sensitivity analysis experiments were conducted to determine the optimal values for parameters 
and used in frame aggregation (Section 4.3), training data and number of training iterations. Figure 10 shows the 
erage accuracies of rip current detection from our test data using different values of N and T . The smallest N(= 60) 

and T (= 30) with the highest accuracy was chosen as the optimal N and T . By choosing the smallest N and T we are 
able to save on computation time as well. 

Further experiments were conducted to determine the optimal amount of data needed to train the model. The model 
as trained with 25%, 50% and 100% of the training data. At each stage, the accuracy on the test data was recorded. 
raining the model with the full training data set lead to he highest accuracy as shown in Figure 11. Experiments 
were also conducted on when to stop training our model. The accuracy of the model on the test data was recorded at 
different training epochs. The training was stopped at epoch 60 when the accuracy plateaued as shown in Figure 12. 

We did not conduct a sensitivity analysis of the hyperparameters of the network. We relied on the sensitivity 
analysis conducted by the authors of Faster R-CNN [71] to determine the network’s optimal hyperparameters. 

With frame aggregation the accuracy for test data without rip currents was high compared to the accuracy for test 
a with rip currents. Since frame aggregation takes into account the prior N detections, we can easily filter out 

spurious detections, leading to a higher accuracy for test data without rip currents. 
We noticed that for one video, rip_08.mp4, frame aggregation did not improve the accuracy. For rip_08.mp4, the 

placement of bounding boxes identifying the rip current from individual frames by F-RCNN is more spread out. This 
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Figure 10: Heatmap of accuracy values for parameters N frames and threshold T. 

 

 
leads to smaller over lapping regions of bounding boxes. When used with frame aggregation, the resulting bounding 
box is smaller than the bounding box without frame aggregation. This produces a more conservative estimate of the 
size of of the rip but similar “confidence” of its location using the same IOU threshold. 

The frame aggregation method discussed in Section 4.3 works well when the rip current is fairly stationary relative 
he camera. Specifically, with = 60 frames and a frame rate of 30 frames per second, we are assuming that the 
current is in the same location ver a 2 second interval of the video. This assumption is generally true for video 

tured from stationary cameras such as CCTV or web cameras. If the video were captured using mobile devices such 
smartphones or drones where the rip current moves a significant amount within the frame, additional information 

such as the camera’s accelerometer and GPS can possibly be incorporated in the processing. This is a subject for future 
work. 

We are aware that there is an array of single image object detectors in computer vision literature that we did not 
ain our model on. Due to the time (usually 3-6 days) and GPU resources required to train the model, it is infeasible 
o train our model using many different types of object detection approaches. Therefore we relied on prior work on 
similar critical applications to determine what our single image object detector should be. We have cited those prior 
applications in section 4.2. 

It is challenging to explain why a particular deep learning system produces a certain result. A whole academic field 
been formed around explainability in deep learning and AI systems. For instance, why the model fails to detect  
ip current even though there is a visible rip current to the human observer in the frame?. We attempt to explain 

he variability in the model’s accuracy values by visualizing the input image in the feature space similar to the works 
of [80] and [81]. As an example, we choose frames 0 and 833 of rip_21.mp4. For both frames, there is a visible rip 
current observable to the human expert. For frame 0, the model detects a rip current (true positive), but for frame 833, 
it fails to detect a rip current (false negative). By observing the input images in the feature space as shown in Figure 
13, we can see that for frame 0, the features resemble a rip current, and for frame 833, the features do not resemble a 
rip current. We attribute the true positive detection for frame 0 to the strong signal generated by the features. Similarly, 
we can attribute the false negative of frame 833 to the weak signal generated by its features. 
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Figure 11: Accuracy for models trained on different percentages of training data. 
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Figure 12: Accuracy for testing data on each training epoch 

 

 
We also noticed that Maryan et al. [59] did not perform well in non-rip current cases as shown in Maryan[59] 

column in Table 1. After further study we realized that the test set they used contained almost entirely of images with 
rip currents. We think that the model proposed by Maryan was not extensively tested on non-rip current images, which 
accounted for its poor performance for such conditions. 

We did not do transfer learning to train our model. Transfer learning is a machine learning technique where the 
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Figure 13: Visualization of frame 0 and frame 833 of rip_21.mp4 in feature space 

 
 

parameters and weights learned in one problem are used as the initial values for training another model on a different 
problem [75]. This strategy can significantly reduce training time and is useful when the two problems belong to 
similar domains e.g. detecting cars vs detecting tanks. We were not able to exploit this strategy in training our models 
as we could not find a deep learning model that was trained on a domain somewhat similar to detecting rip currents. 
Note that the method proposed by Maryan et al. [59] is not a deep learning method and hence not applicable here. 

We found it difficult to compare our method with prior work and verify that our model performs well in all con- 
ditions previously researched, due to a lack of public data sets on which to verify our results. In order to ensure that 
future work has a baseline from which to compare, our data sets with thousands of labeled frames are available as part 
of the supplementary material. Nevertheless our data sets are still limited. The accuracy numbers presented in this 
paper are correct on this limited data, but almost certainly overstate probable outcomes in real world deployment. We 
expect that future work will need to collect more examples including less common rip current visual presentation, a 
greater variety of scales, and a wider array of beach distractors. 

Lastly, our work can benefit from a re-examination of the IoU metric employed by our algorithm. Certainly IoU, 
true positive rate, mean average precision (mAP), and the like are common in computer vision research, but these are 
usually used in the context of detection based on appearance rather than on behavior. It would be interesting to study 
how deep learning methods can be trained to recognize rip current behavior using a metric that incorporates a temporal 
dimension. 

7. Conclusion 
We present a machine learning approach for identifying rip currents automatically. We use Faster R-CNN and a 

custom temporal aggregation stage to make detections from still images or videos with higher measured accuracy than 
both humans and other methods of rip current detection previously reported in the literature. Training data and test 
data are included in the supplementary materials. 
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A. Appendix 
In order to encourage progress in this domain, both training and test data sets will be made available to the public. 

Supplementary material including the results to this article can be found online at https://sites.google.com/ 
view/ripcurrentdetection/home 
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